Loading Events

« All Events

  • This event has passed.

SECTE Research Seminar

June 13 @ 11:00 am - 12:00 pm


Random Access for Machine-type Communications


Professor Jinhong Yuan (IEEE Fellow, Professor and Head of Telecommunications, UNSW)


In this work, we propose the user activity identification/channel estimation algorithm and design the efficient random access scheme for massive machine-type communications.

In the first part, we propose a transmission control scheme and design an approximate message passing (AMP) algorithm for the joint user identification and channel estimation (JUICE) in massive machine-type communications. By employing a step transmission control function for the proposed scheme, we derive the channel distribution experienced by the receiver to describe the effect of the transmission control on the design of AMP algorithm. Based on that, we design an AMP algorithm by proposing a minimum mean squared error (MMSE) denoiser, to jointly identify the user activity and estimate their channels. We further derive the false alarm and miss detection probabilities to characterize the user identification performance of the proposed scheme. Furthermore, we optimize the transmission control function to maximize the network throughput. We then propose a deep learning aided list AMP algorithm to further improve the user identification performance. A neural network is employed to identify a suspicious device which is most likely to be falsely alarmed during the first round of the AMP algorithm. We propose to enforce the suspicious device to be inactive in every iteration of the AMP algorithm in the second round. The proposed scheme can effectively combat the interference caused by the suspicious device and thus improve the user identification performance.

In the second part, we investigate the design and analysis of coded slotted ALOHA (CSA) schemes for massive machine-type communications in the presence of channel erasure. We design the code probability distributions for CSA schemes with repetition codes and maximum distance separable codes to maximize the expected traffic load, under both packet erasure channels and slot erasure channels. By optimizing the convergence behaviour of the derived EXIT functions, the code probability distributions to achieve the maximum expected traffic load are obtained. Then, we derive the asymptotic throughput of CSA schemes over erasure channels.


Jinhong Yuan (M’02–SM’11–F’16) received the B.E. and PhD degrees in electronics engineering from the Beijing Institute of Technology, Beijing, China, in 1991 and 1997, respectively. From 1997 to 1999, he was a Research Fellow with the School of Electrical Engineering, University of Sydney, Sydney, Australia. In 2000, he joined the School of Electrical Engineering and Telecommunications, University of New South Wales, Sydney, Australia, where he is currently a Professor and Head of Telecommunication Group with the School. He has published two books, five book chapters, over 300 papers in telecommunications journals and conference proceedings, and 50 industrial reports. He is a co-inventor of one patent on MIMO systems and two patents on low-density-parity-check codes. He has co-authored four Best Paper Awards and one Best Poster Award, including the Best Paper Award from the IEEE International Conference on Communications, Kansas City, USA, in 2018, the Best Paper Award from IEEE Wireless Communications and Networking Conference, Cancun, Mexico, in 2011, and the Best Paper Award from the IEEE International Symposium on Wireless Communications Systems, Trondheim, Norway, in 2007. He is an IEEE Fellow and currently serving as an Associate Editor for the IEEE Transactions on Wireless Communications. He served as the IEEE NSW Chapter Chair of Joint Communications/Signal Processions/Ocean Engineering Chapter during 2011-2014 and served as an Associate Editor for the IEEE Transactions on Communications during 2012-2017. His current research interests include error control coding and information theory, communication theory, and wireless communications.


Dr Jun Tong


Building 35 Room G45, University of Wollongong
Building 35 Room G45
University of Wollongong, 2500 AU
+ Google Map