 This event has passed.
2019 Australasian Association for Logic Meeting
July 12, 2019
The 2019 Australasian Association for Logic Meeting will be held July 12, directly after the Australasian Association of Philosophy Conference.
Schedule  Friday July 12 2019
Time  Talk 
8.45 9.15  Registration 
9.15 10.00  Shawn Standefer, A substructural approach to explicit modal logic 
10.00 – 10.45  Ben Blumson, Relevance and Verification 
10.45 – 11.15  Tea, coffee 
1115 – 12.00  Marcia Pinheiro, Nothing but Allurement: The Monty Hall Problem 
12.00 12.45  Martin Bunder, BCIAlgebras and Related Logics 
12.45 – 1.45  Lunch 
1.45 – 2.30  Kai Tanter, A Note on Restricting Failures of Identity and Cut 
2.30 – 3.15  Timo Eckhardt, Forgetting Positive Epistemic Formulas in a Multiagent Epistemic Logic 
3.15 – 3.45  Tea, coffee 
3.45 – 4.30  AAL AGM 
5.30 – 7.30  AAL Conference Dinner at Ciao Cucina 56 Crown St Wollongong. 
Authors should aim for a time of 45 minutes including discussion time.
Submissions in the form of an abstract of approximately 200 words should be made to mbunder@uow.edu.au by 28 June 2019.
Conference Registration (on arrival)
$30
Accommodation
Visit our Wollongong accommodation listing or Google Wollongong Accommodation. Wollongong or North Wollongong accommodation will be near the free bus route.
Visit Wollongong accommodation listing
Transport
How to get around Wollongong (including the free bus to University of Wollongong)
Martin Bunder, BCIAlgebras and Related Logics
Mathematics and Applied Statistics, University of Wollongong  mbunder@uow.edu.au
Kabzinski in [6] first introduced an extension of BCIlogic that is isomorphic to BCIalgebras. Kashima and Komori in [7] gave a Gentzenstyle sequent calculus version of this logic as well as another sequent calculus which they proved to be equivalent. The second they used to prove decidability of the word problem for BCI algebras. The decidability proof relies on cut elimination for the second system, this paper provides a fuller and simpler proof of this. Also supplied is a new decidability proof and prooffinding algorithm for their second extension of BCIlogic and so for BCIalgebras.
Timo Eckhardt, Forgetting Positive Epistemic Formulas in a Multiagent Epistemic Logic
University Of Melbourne  Teckhardt@student.unimelb.edu.au
In this paper, I provide a generalised formal account of forgetting that allows for more than simply forgetting boolean formulas. In order to do so, I present a system that generalises FernandezDuque et al.’s framework of forgetting [1] in two ways: By allowing for multiple agents and by being able to handle `positive epistemic’ formulas, i.e. those that do not include negations of knowledge statements. It will be based on the minimal impact approach that preserves as much knowledge of an agent as possible while the knowledge of the forgotten formula is lost. I introduce an operator [y]A that represents the result of agents A forgetting , i.e. \ after some agents A forget that ”. Finally, I show that the operation is successful, i.e. that after A forget , they in fact no longer know .
References
1. David FernandezDuque, Angel NepomucenoFernandez, Enrique SarrionMorillo, Fernando SolerToscano, and Fernando R. VelazquezQuesada. Forgetting complex propositions. CoRR, 2015.
Ben Blumson, Relevance and Verification
Marcia Pinheiro, Nothing but Allurement: The Monty Hall Problem
Philosophy and Mathematics IICSE University  mrprofessional@yahoo.com
Professor Doctor Priest mentioned Monty Hall, and his famous TV show, where randomly selected people had to choose a door in three, then confirm or change their choice at a second moment, in a conference in 2000: the magic trick that proved that mathematicians had imperfect reasoning when laying the foundations of Combinatorics. Mathematicians responded: it is not the sight, but the eyes of the beholder of the vision; their eyes see only what they intend to see instead of what should be seen.
We discuss the analysis presented by Pinheiro in The Monty Hall Problem, a book from 2016, available at Amazon.com, and, with that, a ‘proof’ presented by Doctor Baumann in 2008.
The intentions are convincing the public that Doctor Baumann’s proof contains a fallacy, and therefore Priest does not have a soundproof of his claim in this problem.
Shawn Standefer, A substructural approach to explicit modal logic
University of Melbourne
In this talk, I will present a class of ternary relational models for explicit modal logics. I will highlight a difficulty for proving completeness for these logics. Completeness can be proved by extending the language and the logic. I will then show how to accommodate some common extensions of the explicit modal logics in the present setting.
Kai Tanter, A Note on Restricting Failures of Identity and Cut
Monash University
In their recent article “Negation as Cancellation, Connexive Logic, and qLPm” Wansing & Skurt (2018) define a system qLPm that combines Priest’s minimally inconistent Logic of Paradox (LPm) with Malinowski’s qentailment. Like qentailment, qLPm is nonreflexive, however the combination with LPm results in failures of reflexivity being restricted to contradictions. In this talk I’ll look at extending this work to restricting failures of transitivity, as well as to the Liar and Curry sentences.
Details
 Date:
 July 12, 2019
 Events Category:
 School of Mathematics and Statistics
 Events Tags:
 school of mathematics and applied statistics
Organiser
 Martin Bunder
 Phone:
 +61 2 4221 4151  Building 39C Room 175
 Email:
 mbunder@uow.edu.au
Other
 Location (Campus Map)
 https://maps.uow.edu.au/app/1/home/106
Venue
 Building 39C Room 174, University of Wollongong

HVVJ+2V
Wollongong, New South Wales 2522 Australia + Google Map